Structure of light fields in natural scenes.
نویسندگان
چکیده
Light fields [J. Math. Phys. 18, 51 (1936); The Photic Field (MIT, 1981)] of natural scenes are highly complex and vary within a scene from point to point. However, in many applications complex lighting can be successfully replaced by its low-order approximation [J. Opt. Soc. Am. A 18, 2448 (2001); Appl. Opt. 46, 7308 (2007)]. The purpose of this research is to investigate the structure of light fields in natural scenes. We describe the structure of light fields in terms of spherical harmonics and analyze their spatial variation and qualitative properties over scenes. We consider several types of natural scene geometries. Empirically and via modeling, we study the typical behavior of the first- and second-order approximation of the local light field in those scenes. The first-order term is generally known as the "light vector" and has an immediate physical meaning. The quadrupole component, which we named "squash tensor," is a useful addition as we show in this paper. The measurements were done with a custom-made device of novel design, called a "Plenopter," which was constructed to measure the light field in terms of spherical harmonics up to the second order. In different scenes of similar geometries, we found structurally similar light fields, which suggests that in some way the light field can be thought of as a property of the geometry. Furthermore, the smooth variation of the light field's low-order components suggests that, instead of specifying the complete light field of the scene, it is often sufficient to measure the light field only in a few points and rely on interpolation to recover the light field at arbitrary points of the scene.
منابع مشابه
Progressively-Refined Reflectance Functions from natural Illumination
In this paper we present a simple, robust and efficient algorithm for estimating reflectance fields (i.e., a description of teh transport of light through a scene) for a fixed viewpoint using images of the scene under known natural illumination. Our algorithm treats the scene as a black-box linear system that transforms an input signal (the incident light) into an output signal (the reflected l...
متن کاملNumerical Study of the Mass Transfer Effects on the Flow and Thermal Fields Structures under the Influence of Natural Convection
In this paper, a numerical study has been carried out for coupled mass, momentum and heat transfer in the field under effects of natural convection. For this purpose, the unsteady incompressible Navier-Stokes equations with the terms of the Buoyancy forces (due to temperature gradients), energy conservation and concentration (mass) transfer equations have been simultaneously solved using approp...
متن کاملThe receptive fields of inferior temporal cortex neurons in natural scenes.
Inferior temporal cortex neurons have generally been found to have large visual receptive fields that typically include the fovea and extend throughout much of the visual field. However, a problem of such a large receptive field is that it does not easily support object selection by subsequent processing areas, in that all objects within such a large receptive field might activate inferior temp...
متن کاملExperience-Dependent Specialization of Receptive Field Surround for Selective Coding of Natural Scenes
At eye opening, neurons in primary visual cortex (V1) are selective for stimulus features, but circuits continue to refine in an experience-dependent manner for some weeks thereafter. How these changes contribute to the coding of visual features embedded in complex natural scenes remains unknown. Here we show that normal visual experience after eye opening is required for V1 neurons to develop ...
متن کاملRepresentation of higher-order statistical structures in natural scenes via spatial phase distributions
Natural scenes contain richer perceptual information in their spatial phase structure than their amplitudes. Modeling phase structure of natural scenes may explain higher-order structure inherent to the natural scenes, which is neglected in most classical models of redundancy reduction. Only recently, a few models have represented images using a complex form of receptive fields (RFs) and analyz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 48 28 شماره
صفحات -
تاریخ انتشار 2009